DI14C_Nepal

Published on
Embed video
Share video
Ask about this video

Scene 1 (0s)

[Audio] 尊敬的各位专家,大家好!我是中国科学院西北生态环境资源研究院冰冻圈科学与冻土工程国家重点实验室的副研究员塔努吉・舒克拉(Tanuj Shukla)博士。.

Scene 2 (15s)

[Audio] 今天,我将围绕冰川碳循环及其气候关联性研究,分享我的研究经历与拟定的研究计划。首先,.

Scene 3 (29s)

[Audio] 向各位介绍我的学习与工作经历。. Defense Outline (答辩提纲). 一、Study and Work Experiences (学习与工作经历) 二、Main Achievements (取得的主要成果) 三、Proposed Work Plan (对申请岗位的工作设想).

Scene 4 (35s)

[Audio] 我在冰川研究领域已积累逾 12 年经验。从印度瓦迪亚研究所博士阶段的研究,到坎普尔印度理工学院的博士后研究工作,再到 2023 年起在中科院担任副研究员至今,在整个学术与工作阶段,我的研究核心始终聚焦于冰川及其在碳循环中的作用机制。.

Scene 5 (1m 7s)

[Audio] 在此期间,我获得了多个国际科研机构的项目支持,包括印度坎普尔理工学院、美国麻省理工学院以及波兰国家学术交流局。依托这些项目,我得以深入探究冰冻圈化学与碳循环。同时,我还荣获了多项科技奖励及荣誉,在一定程度上得到了学术界的认可,更为我后续开展科学研究、搭建科研合作网络提供了有力支撑。.

Scene 6 (1m 45s)

[Audio] 我在喜马拉雅山脉及青藏高原的冰川研究领域,积累了较多的野外工作经验。近些年来,我先后参与了 11 条喜马拉雅冰川及 2 条青藏高原冰川的研究工作。研究内容涵盖雪坑观测、融水采样及自动气象站布设等多个方面。地图上的红色方框标注的是我研究最为深入的区域。此外,我还作为核心成员参与了第七次Gangotri冰川考察。这些野外工作实践,为我奠定了坚实的冰川碳循环研究基础,不局限于理论层面,更具备充分的实践验证。.

Scene 7 (2m 30s)

[Audio] 过去数年间,本人在 SCI 期刊累计发表学术论文 30 篇,其中以第一作者或通讯作者身份发表 12 篇;加入中国科学院(CAS)以来,已发表相关论文 7 篇。研究成果发表于Science、Environmental Science and Technology Letters等国际顶尖学术期刊及多个领域权威期刊。 上述研究成果不仅体现了稳定的学术产出能力,更彰显了明确且持续的研究方向;在开展独立自主研究的同时,本人亦积极开展跨领域、跨团队合作研究。.

Scene 8 (3m 11s)

Articles published in collaboration (n=11) Science Bulletin (IF: 21.1) (CAS -Q1) Environmental Pollution (IF: 7.3) (CAS -Q1) Water Resource Research (IF: 5.2) (CAS -Q1) Advances in Climate Change Research (IF: 5.6) (CAS -Q1) Land Degradation and Development (IF: 3.7) (CAS –Q2) Geophysical Research Letters (IF: 5.6) (CAS –Q2) Environmental Research Letters (IF: 5.6) (CAS –Q2) Geomorphology (IF: 3.3) (CAS –Q2) Boreas (CAS –Q2) Journal of Mountain Science (CAS –Q3) Environmental Research and Development (CAS –Q3).

Scene 9 (3m 38s)

[Audio] 接下来,. Defense Outline (答辩提纲). 一、Study and Work Experiences (学习与工作经历) 二、Main Achievements (取得的主要成果) 三、Proposed Work Plan (对申请岗位的工作设想).

Scene 10 (3m 52s)

[Audio] 我将介绍本人 12 年科研工作期间所取得的核心成果。在展示具体成果之前,先向各位说明我的研究方向。 正如左侧图片所示,这些山谷曾被冰川完全覆盖。但随着气候变暖,冰川开始出现物质亏损,这一退缩过程引发了一系列物理、化学及生物层面的连锁变化。 其中,物理变化直观可见,包括地貌形态的改变、冰川面积的缩减等;但生物与化学层面的变化则更为隐蔽,难以直接观测。 我的研究聚焦于其中一个隐性过程:即冰川退缩过程中,岩石发生风化破碎并引发化学变化的机制。这些化学反应可能会改变大气中的碳平衡。后续幻灯片中,我将具体阐释其作用路径。 当前气候变暖背景下,这一化学失衡过程究竟是在移除大气中的二氧化碳,还是在向大气中释放二氧化碳?这一尚未明确的科学问题,正是令科学家们高度关注的研究热点。.

Scene 11 (5m 1s)

[Audio] 下面为大家演示这一过程的工作机制 从图左侧可以看到,降雨落在冰川表面。这些雨水会吸收大气中的二氧化碳,形成碳酸,也就是图中这个蓝色的大液滴。 当碳酸与硅酸岩(如硅酸二钙,化学式:Ca₂SiO₄)发生反应时,会将空气中的二氧化碳转化为碳酸氢根离子,最终汇入河流。这一过程被称为二氧化碳汇。 但并非所有岩石的反应机制都相同。当硫化物矿物(如黄铁矿,化学式:FeS₂)分解时,会生成硫酸。硫酸与碳酸盐岩反应时,不仅不会去除二氧化碳,反而会将其释放到大气中。 这一现象至关重要,它可能导致部分冰川从 "二氧化碳的汇" 转变为 "二氧化碳的源",但目前我们尚不清楚该效应的普遍程度及影响强度。 因此,我正通过真实的野外数据集开展研究,核心旨在明确三个问题:冰川是否会释放二氧化碳?若会,释放量为多少?以及,哪些因素调控着这一释放过程?.

Scene 12 (6m 15s)

Main Achievements (取得的主要成果). Achievement 1: Characterization and mechanisms of CO₂ source effects driven by chemical weathering in glacier regions (成果一:冰川区化学风化驱动CO₂源效应的特征及机制) Achievement 2: Differential controls of glaciers on trace metal transport and pollution risk (成果二:冰川对痕量金属迁移及污染风险的差异性控制机制) Achievements 3: Coupled mechanisms of hydrogeochemical processes and extreme event risks in Mountain glacier regions (成果三:冰川区水文地球化学过程与极端事件风险的耦合机制).

Scene 13 (6m 46s)

7500'E 8000'E Stud area INDIA Legend Studied g HKH glaciers 7500'E 8000'E o 125 250 8500'E TIBET 500 8500'E.

Scene 14 (7m 28s)

[Audio] Rainfall in the Himalayas Glacial lake areas [glacier data from the Randolph Glacier Inventory (6)] are affected by the regional rainfall, which has had local variations from 2000 to 2015 (data source: https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary) (left). The increasing temperature in the Northern Hemisphere (top right) (data source: https://data.giss.nasa.gov/gistemp) is correlated with an increased number of extreme rainfall events (middle right) (10, 11) and an expansion in the number of glacial lakes, some that are susceptible to glacial lake outburst floods (GLOFs), across the region (bottom right) (12)..

Scene 15 (8m 7s)

[Audio] Rainfall in the Himalayas Glacial lake areas [glacier data from the Randolph Glacier Inventory (6)] are affected by the regional rainfall, which has had local variations from 2000 to 2015 (data source: https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary) (left). The increasing temperature in the Northern Hemisphere (top right) (data source: https://data.giss.nasa.gov/gistemp) is correlated with an increased number of extreme rainfall events (middle right) (10, 11) and an expansion in the number of glacial lakes, some that are susceptible to glacial lake outburst floods (GLOFs), across the region (bottom right) (12)..

Scene 16 (9m 9s)

Tanuj Shukla et al, 2023 (Global and Planetary Change).

Scene 17 (9m 38s)

Achievement 2.1 Differential controls of glaciers on trace metal transport and pollution risk 2.1 冰川对痕量金属迁移的差异性控制机制及污染风险.

Scene 18 (10m 24s)

Achievement 2.2 Global scale assessment of trace metals release from mountain glaciers and glacier specific controls 2.2 山地冰川痕量金属释放的全球尺度评估及控制因素.

Scene 19 (10m 47s)

冰川类型对全球痕量金属的迁移起主导控制作用 与极地冰盖相比,山地冰川释放的生物活性痕量金属浓度显著更高 高山环境中,化学风化作用增强、岩性多样性(特征)以及溶质-颗粒物迁移过程加速.

Scene 20 (11m 26s)

Achievement 2.3 Natural vs Anthropogenic trace metal transport 2.3 痕量金属的自然与人为来源对比.

Scene 21 (12m 21s)

[Audio] Rainfall in the Himalayas Glacial lake areas [glacier data from the Randolph Glacier Inventory (6)] are affected by the regional rainfall, which has had local variations from 2000 to 2015 (data source: https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary) (left). The increasing temperature in the Northern Hemisphere (top right) (data source: https://data.giss.nasa.gov/gistemp) is correlated with an increased number of extreme rainfall events (middle right) (10, 11) and an expansion in the number of glacial lakes, some that are susceptible to glacial lake outburst floods (GLOFs), across the region (bottom right) (12)..

Scene 22 (13m 4s)

成果三:喜马拉雅冰川区水文地球化学过程与极端事件风险耦合机制 成果四:中喜马拉雅地区冰川与气候敏感性重建及地貌演化机制研究.

Scene 23 (13m 54s)

成果三:喜马拉雅冰川区水文地球化学过程与极端事件风险耦合机制 成果四:中喜马拉雅地区冰川与气候敏感性重建及地貌演化机制研究.

Scene 24 (14m 33s)

ELSEVIER Science of The Total Environment volume 835, 20 August 2022, 155383 SEM-EDS and water chemistry characteristics at the early stages of glacier recession reveal biogeochemical coupling between proglacial sediments and meltwater Lukasz Stachnik a bc R E, Jacob C. Yde b E, Kazimierz Krzemiefi c E, Lukasz Uzarowicz dE Slawomir Sitek e E, Piotr Kenis a f E.

Scene 25 (15m 33s)

scientific data OPEN Tibetan Plateau Runoff and Evapotranspiration Dataset DATA DESCRIPTOR by an observation-constrained cryosphere-hydrology model Xinfeng Fanu, Lei Wang Hu Liul•2, Deliang Chen03, Lei Song4, Yuanwei WangS, Jia Qis, Chenhao ChaiZ, Ruishun Liu-u, Xiuping Lil, Jing Zhoui, Xiaoyu Guoi & Junshui Longu.

Scene 26 (15m 49s)

Scientific collaborators (主要科研合作者). [image]. [image].

Scene 27 (16m 22s)

Defense Outline (答辩提纲). 一、Study and Work Experiences (学习与工作经历) 二、Main Achievements (取得的主要成果) 三、Proposed Work Plan (对申请岗位的工作设想).

Scene 28 (16m 36s)

Research Questions (科学问题) What biogeochemical and environmental factors regulate CO₂ emissions from glaciers in High Mountain Asia? (调控亚洲高山冰川CO₂排放的生物地球化学与环境因子是什么?) What are the short-term seasonal effects on CO₂ emissions from High Mountain Asia glaciers? (亚洲高山冰川 CO₂排放的短期季节特征是什么?) How will projected changes in climate patterns in High Mountain Asia affect CO₂ emissions from the region glaciers?(亚洲高山区未来气候变化将如何影响该区域冰川的 CO₂排放?).

Scene 29 (17m 10s)

7000'E (a) o 8000'E .e@ingbingtan Glacier- Koxkar Glacier Kartamak Glacier Glacier Passu Glacier— 9000'E Urumqi Glacier No. 1 IOOOO'E Gulmit Glacier Glacier Phuche Glacie Glacier* Laohugou Glacier No.12 Qiyi glacier •Laohugou River Yuzhu Peak Glacier Dongkemadi Glacier: eGenpu z Batal Glacier': Patsio Glacie Sutri Dhaka Glacier Chhota Shigri Glacier Naradu Glacier Dokriani Glacier Chorabari Glacier Gangotri Glaciere Satopanth Glacier • •Dona Tower Mars andic JZhadang Glacierears*w Zhadang Hanging Glacier} Up er Mars andi- Glacier, Hailuogou Glacier Dudh Koto Nar Bhulbule Baishui Glacier No.l Elevation(m a.s.l) _152 8848 o 250 500 Kilometers Glacier o Silicate-dominated (n=31) Carbonate-dominated (n=5) Mixed carbonate and silicate (n=5).

Scene 30 (17m 38s)

Research Plan and Objectives (工作计划和目标). Year 1 Field Monitoring Plan (野外监测计划) Generate High-Resolution datasets from Baishui Glacier No. 1 and Laohugou Glacier No. 12 during the ablation season. 2. Quantify Redox-Controlled CO₂ Fluxes (量化氧化还原控制的CO₂通量) Meandir Geochemical Modelling and Mixing modelling for source contributions using stable isotope tracing (δ³⁴S, Δ³³S). 3. Verify the Precipitation Threshold Hypothesis (验证降水阈值假说) Validate whether glacier-fed catchments transition from CO₂ sinks to sources when annual precipitation exceeds ~800 mm..

Scene 31 (18m 32s)

Methodology and expected outcomes (研究方法和预期成果). Research outcomes To clarify the dominant role of precipitation in CO₂ fluxes in glacial regions (明确降水对冰川区CO₂通量的主导作用) To quantify the threshold for precipitation-driven CO₂ source-sink transition (量化降水驱动的CO₂源汇转换阈值) To provide a novel interpretive framework for the stability of the carbon cycle on the Qinghai-Tibet Plateau (青藏高原碳循环稳定性提供全新解释框架).

Scene 32 (19m 0s)

Overview. Manpower training Regional outreach. Master students: DENG Chuanlin Research area: Cryospheric carbon cycle.

Scene 33 (19m 14s)

Thank you for your attention 谢谢各位专家!. The research work done so far has published 30 articles in SCI journals..