2. CNN Architecture

Published on Slideshow
Static slideshow
Download PDF version
Download PDF version
Embed video
Share video
Ask about this video

Scene 1 (0s)

2. CNN Architecture. . 1.

Scene 2 (13s)

1-Convolutional layer 2-pooling layer 3-ReLU layer 3.1-The sigmoid function 3.2-hyperbolic tangent 4-Fully connected layer/output layer(the classification layer).

Scene 3 (32s)

2. CNN Architecture. 1-Convolutional layer output=.

Scene 4 (53s)

2. CNN Architecture. 2-pooling layer 2.1-MAX Pooling 2.2 Average Pooling.

Scene 5 (1m 19s)

2. CNN Architecture. 3-ReLU layer Some of the ReLU variants Softplus( SmoothReLU ) Noisy ReLU Parametric ReLU ExponentialReLU(ELU) ).

Scene 6 (1m 33s)

2. CNN Architecture. 4-Fully connected layer/output layer (the classification layer) 4.1 softmax.

Scene 7 (1m 48s)

2. CNN Architecture. Overview of some models 1-LeNet-5 CNN_based model 2-Stacked Denoising Autoencoders network(SDAE) 3- Deep Belief Network (DBN) 4-Artificial neural network(ANN) 5-Custom CNN 6-VGG 19 NETWORK.