2. CNN Architecture

1 of
Published on Video
Go to video
Download PDF version
Download PDF version
Embed video
Share video
Ask about this video

Page 1 (0s)

2. CNN Architecture. . Convl Conv2 Conv3 æ3x3 Conv4 64@3x3 64@3x3 s M ax-poolhg M ax-pooing Max-poolhg Input Layer Feature Extractbn Layer M ax-poolhg 256 Ckssificatbn Layer.

Page 2 (13s)

1-Convolutional layer 2-pooling layer 3-ReLU layer 3.1-The sigmoid function 3.2-hyperbolic tangent 4-Fully connected layer/output layer(the classification layer).

Page 3 (32s)

2. CNN Architecture. 1-Convolutional layer output=.

Page 4 (53s)

2. CNN Architecture. 2-pooling layer 2.1-MAX Pooling 2.2 Average Pooling.

Page 5 (1m 19s)

2. CNN Architecture. 3-ReLU layer Some of the ReLU variants Softplus(SmoothReLU) Noisy ReLU Parametric ReLU ExponentialReLU(ELU).

Page 6 (1m 33s)

2. CNN Architecture. 4-Fully connected layer/output layer (the classification layer) 4.1 softmax.

Page 7 (1m 48s)

2. CNN Architecture. Overview of some models 1-LeNet-5 CNN_based model 2-Stacked Denoising Autoencoders network(SDAE) 3- Deep Belief Network (DBN) 4-Artificial neural network(ANN) 5-Custom CNN 6-VGG 19 NETWORK.