evsjv‡`k Dš§y³ wek^we`¨vjq e¨e¯’vcKxq wm×všÍ MÖn‡Y MwYZ BDwbU AvU c„ôv 158 g¨vwUª· Ges wbY©vq‡Kig‡a¨ cv_©K¨ (Diffedence between Matrix and Determinant): g¨vwUª· wbY©vqK (i) g¨vwUª· AvqZKvi ev eM©vKvi n‡Z cv‡i| (i) wbYv©qK †KejgvÎ eM©vKvi n‡q _v‡K| (ii) g¨vwUª·‡K mvaviYZ cÖ_g eÜbx () A_ev Z…Zxq eÜbx [ ] A_ev `yB †Rvov Dj¤^ †iLv Gi mvnv‡h¨ cÖKvk Kiv hvq| (ii) wbY©vqK‡K †KejgvÎ `yBwU Dj¤^ †iLv Gi mvnv‡h¨ cÖKvk Kiv nq| (iii) g¨vwUª‡·i †Kvb gvb †bB| (iii) wbY©vq‡Ki GKwU wbw`©ó gvb Av‡Q| (iii) g¨vwUª·‡K †Kvb †¯‹jvi Øviv ¸Y Ki‡j Zvi mKj Dcv`vb‡KB H †¯‹jvi Øviv ¸Y Kiv †evSvq| †hgb, 1 2 3 2 3 . 0 1 2 0 2 3 4 1 3 4 k k k A k k k k k k (v) (iv) wbY©vqK‡K †Kv‡bv †¯‹jviØviv ¸Y Ki‡jZvi †h‡Kvb GKwU mvwi ev Kjv‡gi mKj Dcv`vb‡K †¯‹jvi Øviv ¸Y Kiv †evSvq| †hgb, 1 4 3 2 1 0 3 2 1 4 3 2 1 0 3 2 1 . k k k k A D`vniY 3: 7 5 2 1 2 3 5 9 8 A Gi wbY©vqK wbY©q Kiæb| mgvavb: †`Iqv Av‡Q, 7 5 2 1 2 3 5 9 8 A 5 2 2 5 3 7 2 1 9 3 7 5 1 82 A 4) (5 15 2) 9(21 5) 8(14 9 23 5 19 8 9 95 207 72 167 207 40 D`vniY 4: cªgvY Kiæb †h, )1 )1 ( ( 1 1 1 1 1 2 2 4 2 2 p p p p p p p mgvavb: evgcÿ 2 2 2 2 1 3 3 2 2 4 2 4 2 1 1 1 1 0 0 1 1 1 , [ , ] 1 1 1 p p p p p C C C C C C p p p p p )1 ( 1 )1 ( 1 1 2 2 2 p p p p p p , [1g mvwii gva¨‡g we¯Í…wZ K‡i] 2 2 1 1 1 1 p p p p p p p p 1 1 1 1 1 2 1 1 1 2 p p p p 1 1 1 2 p p p p 2 2 1 1 p p p = Wvbcÿ (cÖgvwYZ).
evsjv‡`k Dš§y³ wek^we`¨vjq g¨vwUª· Ges wbY©vqK BDwbU AvU c„ôv 159 D`vniY 5: †`Lvb †h, 0 1 1 1 b a c a c b c b a mgvavb: evgcÿ b a c a c b c b a 1 1 1 c b a c b a c b a c b a 1 1 1 2 3 3 C [C C ] 1 1 1 1 1 1 c b a c b a 0 0 c a b = Wvbcÿ (cÖgvwYZ) D`vniY 6: †`Lvb †h, xyz z y z y z z x x y x y x 4 mgvavb: evg cÿ z y z y z z x x y x y x z y z z y z y z z x z z x x y x y x y x ] C [C 3 2 1 1 C C z y z z z z x z y x 2 2 0 z y z z y z z z x y x z 1 0 0 ( 2 ) R ] [R 3 2 2 R z y z y x y x z 1 0 0 ( 2 ) ) ( 2 ) 1 ( xy xy z 4xyz = Wvbcÿ (cÖgvwYZ) D`vniY 7: 0 2 2 3 3 3 2 1 6 x x x x x n‡j x Gi gvb wbY©q Kiæb| mgvavb: †`Iqv Av‡Q, 0 2 2 3 3 3 2 1 6 x x x x x.
evsjv‡`k Dš§y³ wek^we`¨vjq e¨e¯’vcKxq wm×všÍ MÖn‡Y MwYZ BDwbU AvU c„ôv 160 ⇒ 0 2 2 3 3 3 2 3 1 3 6 2 x x x x x x x R ] [R 2 1 1 R ⇒ 0 2 2 3 3 3 2 2) (1 2) (3 2 x x x x x x x ⇒ 0 2 2 3 3 3 2 1 3 1 2) ( x x x x x ⇒ 0 3 2 9 2 3 2 3 6 3 2 1 1 3 3 1 2) ( x x x x x 2 2 1 3 3 1 [C 3C , C C ] C C ⇒ 0 1 9 2 3 1 2) (3 2 0 0 1 2) ( x x x x x ⇒ 0 1 9 2 3 1 2) (3 2 0 0 1 2) ( x x x x x ⇒ 0 1 9 2 3 1 2) (3 2 0 0 1 )1 2)( ( x x x x ⇒ 0 9)} (2 2) (3 1 { )1 2)( ( x x x x ⇒ 0 9) 2 6 1)( 3 2)( ( x x x x ⇒ 0 15) 1)( 5 2)( ( x x x ⇒ 0 )3 1)( 2)( (5 x x x ⇒ 0 )3 1)( 2)( (5 x x x ⇒ 2, 1 3 x x x Ges myZivs, x Gi gvb 1, 2 Ges 3 mvims‡ÿc: wbY©vqK n‡”Q eM© g¨vwUª‡·i GKwU we‡kl cÖKv‡ii dvskb| G‡K `yBwU Djø¤^ †iLv (Vertical Line) Gi g‡a¨ †jLv nq| g¨vwUª‡·i †Kvb gvb †bB wKš‘ wbY©vq‡Ki GKwU wbw`©ó gvb Av‡Q|.
evsjv‡`k Dš§y³ wek^we`¨vjq g¨vwUª· Ges wbY©vqK BDwbU AvU c„ôv 161 g¨vwUª‡·i i¨v¼ Ges GKNvZ wewkó mgxKi‡Yi mgvavb Rank of a Matrix and Solving of Linear Equation D‡Ïk¨ G cvV †k‡l Avcwb- g¨vwUª‡·i i¨v¼ Kx Zv †evS‡Z cvi‡eb; g¨vwUª· Gi i¨v¼ wbY©q Ki‡Z cvi‡eb; g¨vwUª‡·i gva¨‡g GKNvZ wewkó mgxKiY wbY©q Ki‡Z cvi‡eb; †µgvi wbq‡gi gva¨‡g wewfbœ mgm¨v mgvavb Ki‡Z cvi‡eb| g¨vwUª‡·i i¨v¼ Rank of a Matrix g¨vwUª· Gi i¨v¼ n‡jv †Kvb g¨vwUª‡·i Ak~b¨ Abyivwki m‡ev©”P µg| †Kvb g¨vwUª· A n‡j Zvi i¨v¼ (Rank)R(A) Øviv cÖKvk Kiv nq Ges cov nq Rank of a Matrix A. g¨vwUª· Gi i¨v¼ wbY©q c×wZ: (i) †KvbeM© g¨vwUª· (Square Matrix)-Gi wbY©vq‡Ki gvb k~b¨ bv n‡j, D³ g¨vwUª‡·i µg (Order) hZ Dnvi i¨v¼ (Rank)-I ZZ| A_©vr A GKwU 2×2 g¨vwUª· Ges A 0 Z‡e R(A)=2. GKBfv‡e A GKwU 3×3 µ‡gi g¨vwUª· Ges A 0 nq, Z‡e R(A)=3| (ii) hw` †Kv‡bv g¨vwUª· = Gi wbY©vq‡Ki gvb k~b¨ nq Ges AšÍZc‡ÿ GKwU Abyivwk k~‡b¨i mgvb bv nq Z‡e g¨vwUª‡·i i¨v¼ n‡e D³ g¨vwUª‡·i µ‡gi †P‡q (1) GK Kg| A_©vr A GKwU 3×3 µ‡gi g¨vwUª· hvi A 0 Ges Gi GKwU Abyivwk (Minor) Gi wbY©vqK k~b¨ bq| d‡j A g¨vwUª‡·i i¨v¼ n‡e R(A) = 2| hw` A g¨vwUª‡·i µg 2×2 nq Z‡e R(A) = 1| (iii) hw` g~jeM© g¨vwUª‡·i wbY©vq‡Ki gvbk~b¨ nq Ges me¸‡jv Abyivwki wbY©vqK k~b¨ n‡j Zvi i¨v¼ g¨vwUª‡·i µ‡gi †P‡q 2 Kg n‡e| D`vniY 1: wb¤œwjwLZ g¨vwUª·¸‡jvi i¨v¼ wbY©q Kiæb| (i) 1 0 0 0 1 0 0 0 1 A (ii) 10 1 1 2 1 1 2 1 1 B mgvavb:(i) †`Iqv Av‡Q, 1 0 0 0 1 0 0 0 1 A , 1 0 0 0 1 0 0 0 1 A 1 0 0 1 10 1 0 0 00 1 0 0 11 A myZivs,g¨vwUª· A Gi i¨v¼ 3. (ii) †`IqvAv‡Q, 10 1 1 2 1 1 2 1 1 B 10 1 1 2 1 1 2 1 1 B 1 1 1 2 1 10 1 2 1 1 10 1 2 1 1 )1 2 1( 2) (1 10 2) 10 (1 0 12 12 0 B GLv‡b, B 0 wKš‘ 0 2 1 2 1 , myZivs, B g¨vwUª· Gi i¨v¼ 2. cvV-8.4.
evsjv‡`k Dš§y³ wek^we`¨vjq e¨e¯’vcKxq wm×všÍ MÖn‡Y MwYZ BDwbU AvU c„ôv 162 GKNvZ wewkó mgxKiY (Linear Equation): wb‡¤œ GKNvZ wewkó wZbwU mgxKiY †`Iqv n‡jv: 1...................( ) 3 13 2 12 11 1 i d a x a x a x 2 .................( ) 3 23 2 22 21 1 ii d a x x a a x ) 3................( 3 33 2 32 31 1 iii d a x x a a x GLb Dc‡ii mgxKiY¸‡jv‡K g¨vwUª‡·i mvnv‡h¨ mvwR‡q cvBÑ 3 2 1 3 2 1 33 32 31 23 22 21 13 12 11 d d d x x x a a a a a a a a a g‡b Kiæb, A a a a a a a a a a 33 32 31 23 22 21 13 12 11 ,mnM g¨vwUª· X x x x 3 2 1 , PjK m¤^wjZ g¨vwUª· C d d d 3 2 1 aªæeK g¨vwUª·| myZivs, Dc‡ii m¤úK©wU wb¤œwjwLZfv‡e wjL‡Z cviv hvq, AX=C A C X 1 myZivs, PjK g¨vwUª· Gi gvb wecixZ g¨vwUª· Ges aªæeK g¨vwUª· Gi ¸Ydj| D`vniY 2: wb¤œwjwLZ GKNvZ wewkó mgxKiY¸‡jvi g¨vwUª· Gi gva¨‡g mgvavb Kiæb| 8 2 3 6 3 2 9 3 2 3 2 1 3 2 1 3 2 1 x x x x x x x x x mgvavb: †`Iqv Av‡Q, 8 2 3 6 3 2 9 3 2 3 2 1 3 2 1 3 2 1 x x x x x x x x x myZivs, g¨vwUª· Gi gva¨‡g †jLv hvq, 8 6 9 2 1 3 3 2 1 1 3 2 3 2 1 x x x myZivs, g¨vwUª· Gi gva¨‡g †jLv hvq,AX=C †hLv‡b, A mnM g¨vwUª·, X PjK m¤^wjZ g¨vwUª· Ges C aªyeK g¨vwUª·| A C X 1 GLb, 2 1 3 3 2 1 1 3 2 A 18 5 21 2 6 1 9 3 2 3 4 2 2 1 3 3 2 1 1 3 2 A †h‡nZz, A 0 | myZivs, 1 A wbY©q Kiv m¤¢e| myZivs, A Gi mn¸YK¸‡jv n‡jv wb¤œiƒcÑ.
evsjv‡`k Dš§y³ wek^we`¨vjq g¨vwUª· Ges wbY©vqK BDwbU AvU c„ôv 163 ,5 1 3 2 1 ,7 2 3 3 1 ,1 2 1 3 2 13 12 11 A A A ,7 1 3 3 2 ,1 2 3 1 2 ,5 2 1 1 3 23 22 21 A A A 1 2 1 3 2 ,5 3 1 1 2 ,7 3 2 1 3 33 32 31 A A A 1 5 7 7 1 5 5 7 1 AT 1 1 7 5 1 5 1 7 18 7 5 1 AT A A A C X 1 ⇒ 1 2 3 1 7 5 9 9 42 40 11 1 1 1 5 1 7 6 45 6 56 17 18 18 18 7 5 1 8 63 30 8 41 x x x myZivs, 1 11 x 18 , 2 17 x 18 Ges 3 41 x 18 D`vniY 3: mgxKiY¸‡jvi g¨vwUª· Gi gva¨‡g mgvavb Kiæb, 15 4 3 5 9 2 3 5 2 z y x z y x z y x mgvavb: †`Iqv Av‡Q, 15 4 3 5 9 2 3 5 2 z y x z y x z y x myZivs, g¨vwUª· Gi gva¨‡g †jLv hvq, 15 9 5 4 3 5 2 1 3 1 2 1 z y x myZivs, g¨vwUª· Gi gva¨‡g †jLv hvq,AX=B †hLv‡b, A mnM g¨vwUª·, X PjK m¤^wjZ g¨vwUª· Ges B aªyeK g¨vwUª·| A B X 1 , GLb, 4 3 5 2 1 3 1 2 1 A , 28 14 4 10 5 1 9 10 2 12 6 4 1 4 3 5 2 1 3 1 2 1 A †h‡nZz, A 0 | myZivs, 1 A wbY©q Kiv m¤¢e|.
evsjv‡`k Dš§y³ wek^we`¨vjq e¨e¯’vcKxq wm×všÍ MÖn‡Y MwYZ BDwbU AvU c„ôv 164 myZivs, A Gi mn¸YK¸‡jv n‡jvÑ 𝐴11 = |−1 2 3 4| = −4 − 6 = −10, , 𝐴12 = − |3 2 5 4| = −(12 − 10) = −2, 𝐴13 = |3 −1 5 3 | = 9 + 5 = 14,𝐴21 = − |2 −1 3 4 | = −(8 + 3) = −11, 𝐴22 = |1 −1 5 4 | = 4 + 5 = 9, 𝐴23 = − |1 2 5 3| = (3 − 10) = 7, 𝐴31 = | 2 −1 −1 2 | = 4 − 1 = 3, 𝐴32 = − |1 −1 3 2 | = −(2 + 3) = −5, 𝐴33 = − |1 2 3 −1| = −1 − 6 = −7 7 7 14 5 9 2 3 11 10 T A 7 7 14 5 9 2 3 11 10 28 1 A 1 A B X 1 ⇒[ 𝑥 𝑦 𝑧 ] = 1 −28 [ −10 −11 3 −2 9 −5 14 7 −7 ] [ 5 9 15 ]= 1 −28 [ −50 − 99 + 45 −10 + 81 − 75 70 + 63 − 105 ] = 1 −28 [ −104 −4 28 ] = [ 26 7 1 7 −1 ] myZivs, 𝑥 = 26 7 , 7 y 1 Ges 1 z †µgv‡ii wbqg (Cramer’s Rule): †µgv‡ii wbq‡g mn-mgxKi‡Yi mgvavb Kiv hvq| eZ©gv‡b GwU GKwU ¸iæZ¡c~Y© c×wZ wn‡m‡e ¯^xK…Z| hLb †Kvb eM©vKvi g¨vwUª‡·i cwiwa Lye eo nq ZLb wecixZ g¨vwUª· wbY©q Kiv LyeB RwUj nq| G Ae¯’vq †µgv‡ii wbq‡g AwZ mn‡RB GKNvZ wewkó mgxKi‡Yi mgvavb Kiv hvq| †µgv‡ii wbq‡g mn-mgxKi‡Yi mgvavb wbY©q Kivi mgq wb¤œwjwLZ c`‡ÿc MÖnY Kiv nq: cÖ_g avc: mgxKiY¸‡jv g¨vwUª· G iƒcvšÍi Ki‡Z n‡e| wØZxq avc: mnM g¨vwUª·‡K A bvg KiY Ki‡Z n‡e| AZtci mnM g¨vwUª· Gi wbY©vqK A wbY©q Ki‡Z n‡e| Z…Zxq avc: cÖ_‡g †h Pj‡Ki gvb wbY©q Kiv n‡e †mB mnM Kjvg‡K cwieZ©b K‡i †mLv‡b PjK g¨vwUª· cÖwZ¯’vcb K‡i 1 A bvg KiY Ki‡Z n‡e| 1 A Gi wbY©vqK 1 A wbY©q Ki‡Z n‡e| Abyiƒcfv‡e, 2 A g¨vwUª‡·i 2 A Ges 3 A g¨vwUª‡·i 3 A wbY©vqK wbY©q Ki‡Z n‡e| PZz_© avc: me©‡kl PjK wZbwUi gvb wbY©q Ki‡Z n‡e| A_©r, 1 2 3 1 2 3 , , A A A x x x A A A D`vniY 4: mgxKiY¸‡jv †µgv‡ii wbq‡g mgvavb Kiæb, 1 2 5 2 4 2 z y x z y x z y x mgvavb: †`Iqv Av‡Q, 1 2 5 2 4 2 z y x z y x z y x GLv‡b, 2 1 1 1 2 1 1 1 2 A.
evsjv‡`k Dš§y³ wek^we`¨vjq g¨vwUª· Ges wbY©vqK BDwbU AvU c„ôv 165 6 1 1 6 2) 1 (1 )1 (1 2 )1 ( 4 2 2 1 1 1 2 1 1 1 2 A GLb, 0 3 9 12 2) 5 (1 )1 (1 10 )1 ( 4 4 2 1 1 1 2 5 1 1 4 1 A 18 4 4 18 5) 1(1 )1 4(2 )1 (10 2 2 1 1 1 5 1 1 4 2 2 A 6 4 4 6 2) 4( 1 5) 1(1 5) ( 2 2 1 1 1 5 2 1 4 1 2 3 A 1 2 3 0 18 6 0; 3; 1 6 6 6 A A A x y z A A A myZivs, wb‡Y©q mgvavb (x,y,z) = (0,3,1)| D`vniY 5: mgxKiY¸‡jv †µgv‡ii wbq‡g mgvavb Kiæb, 11 3 2 7 3 3 5 2 z y x z y x z y x mgvavb: †`Iqv Av‡Q, 11 3 2 7 3 3 5 2 z y x z y x z y x GLv‡b, 1 3 2 3 1 3 1 2 1 A 0 15 11 6 7 2) (1 9 6) 2(3 6) 1 (1 1 3 2 3 1 3 1 2 1 A myZivs, GwUi mgvavb m¤¢e|GLb, 30 32 52 50 1 21 11 33 2 7 9 1 5 1 3 11 3 1 7 1 2 5 1 A 30 15 19 26 1 33 14 6 5 3 33 7 1 1 11 2 3 7 3 1 5 1 2 A 3 1 2 5 3 1 7 1 11 21 2 33 14 5 9 2 32 38 55 15 2 3 11 A .
evsjv‡`k Dš§y³ wek^we`¨vjq e¨e¯’vcKxq wm×všÍ MÖn‡Y MwYZ BDwbU AvU c„ôv 166 1 2 3 30 30 15 2, 2, 1 15 15 15 A A A x y z A A A myZivs, wb‡Y©q mgvavb †mU (x,y,z) = (2,2,1) D`vniY 6: GKwU KviLvbvq wZb ai‡Yi cY¨ h_vµ‡g x, y Ges z Drcv`b nq| mvfv‡i (S) Ges U½x‡Z (T) cY¨¸‡jv weµq Kiv nq| KviLvbvq Drcvw`Z c‡Y¨i weµ‡qi cwigvY wb¤œiƒc: evRvi x y z S 1000 1500 2000 T 4000 3000 1000 B (GKK cÖwZ c‡Y¨i Drcv`b LiP) 5 3 6 C (GKK cÖwZ c‡Y¨i weµq g~j¨) 7 5 10 (i) †gvU Drcv`b e¨q wbY©q Ki‡Z n‡e (ii) †gvU Drcv`b Avq wbY©q Ki‡Z n‡e (iii) †gvU gybvdv wbY©q Ki‡Z n‡e| mgvavb: g‡b Kiæb, Drcv`bK…Z c‡Y¨i g¨vwUª· =A, GKK cÖwZ c‡Y¨i Drcv`b LiP g¨vwUª· = B Ges GKK cÖwZ c‡Y¨i weµqg~j¨ g¨vwUª· = C 5 7 1000 1500 2000 , 3 , 5 4000 3000 1000 6 10 A B C (i) †gvU Drcv`b e¨q = Drcv`bK…Z c‡Y¨i g¨vwUª· × GKK cÖwZ c‡Y¨i Drcv`b LiP g¨vwUª· A_©vr 5 1000 1500 2000 3 4000 3000 1000 6 A B 5000 4500 12000 21500 20000 9000 6000 35000 †gvUDrcv`be¨q = 21500+35000=56500 UvKv (ii) †gvU Drcv`b Avq = Drcv`bK…Z c‡Y¨i g¨vwUª· GKK cÖwZ c‡Y¨i weµq g~j¨ g¨vwUª· A_©vr 7 1000 1500 2000 5 4000 3000 1000 10 A C 7000 7500 20000 34500 28000 15000 10000 53000 †gvU Drcv`b Avq = 34500+53000=87500 UvKv (iii) †gvU gybvdv = †gvU Drcv`b Avq †gvU Drcv`b e¨q = 18000 13000 35000 21500 53000 34500 †gvUgybvdv = 13000+18000=31000 UvKv mvims‡ÿc: g¨vwUª· Gi i¨v¼ n‡jv †Kvb g¨vwUª‡·i Ak~b¨ Abyivwki m‡ev©”P µg| A GKwU 3×3 µ‡gi g¨vwUª· Ges A 0 nq, Z‡e R(A)=3| A GKwU 3×3 µ‡gi g¨vwUª· hvi Ges A 0 Ges Gi GKwU Abyivwk (Minor) Gi wbY©vqK k~b¨ bq| d‡j A g¨vwUª‡·i i¨v¼ n‡e R(A) = 2|.
evsjv‡`k Dš§y³ wek^we`¨vjq g¨vwUª· Ges wbY©vqK BDwbU AvU c„ôv 167 BDwbUg~j¨vqb wb‡Pi Z‡_¨i Av‡jv‡K (1 − 3) bs cÖ‡kœi DËi w`b: 𝐴 = | 4 −2 0 3 3 −4 1 1 2 | 1. 1g mvwi I 2q Kjvg Gi Abyivwki gvb †KvbwU? (K)−8 (L)8 (M)−9 (N)9 2. 3q mvwi I 3q Kjvg Gi Abyivwki gvb †KvbwU? (K)11 (L)20 (M)18 (N)−10 3.wbY©vqK |𝐴| Gi gvb †KvbwU? (K)65 (L)−65 (M)56 (N)−56 m„Rbkxj cÖkœ: 4. 𝐴 = [1 2 3 4 5 6] , 𝐵 = [ 4 6 −1 ] , 𝐶 = [1 2 −5] (K) Dc‡ii g¨vwUª·¸wji Av‡jv‡K 𝐴𝐵Gi gvb wbY©q Kiæb| (L) 𝐴𝐵𝐶 Gi gvb wbY©q Kiæb Ges (M) †`Lvb †h, (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶) 5. 𝐴 = [ 1 2 3 −2 5 −1 2 3 4 ]Ges 𝐵 = [ −1 5 3 7 −2 −1 2 0 3 ] (K) 𝐴𝑇 I 𝐵𝑇Gi gvb wbY©q Kiæb| (L) 𝐴𝐵 Gi gvb wbY©q Kiæb Ges (M) †`Lvb †h, (𝐴𝐵)𝑇 = (𝐵𝐴)𝑇 6. 𝐴 = [ 3 −4 2 −2 1 0 −1 −1 1 ] Ges 𝐵 = [ 𝑥 2 −2 𝑦 5 −4 𝑧 7 −5 ] (K) 𝐴𝐵 = 𝐼3n‡j𝑥, 𝑦, 𝑧m¤^wjZ mgxKiY MVb Kiæb| (L) 𝑥, 𝑦, 𝑧 Gi gvb †µgvi c×wZ‡ZwbY©q Kiæb Ges 𝐵 g¨vwUª·wU ‰Zwi Kiæb| (M) 𝐴𝐵 wbY©q KiæbGes 𝐴 I 𝐵 Gi g‡a¨ m¤úK© wbiƒcY Kiæb| cÖgvY Kiæb : (7-12) 7. | 2𝑎 2𝑏 𝑎 + 𝑏 𝑏 + 𝑐 𝑎 − 𝑐 𝑎 𝑏 − 𝑐 𝑎 + 𝑐 𝑏 | = −2(𝑎 + 𝑏)(𝑎 − 𝑏)2 8. | 𝑎 − 𝑏 − 𝑐 2𝑎 2𝑎 2𝑏 𝑏 − 𝑐 − 𝑎 2𝑏 2𝑐 2𝑐 𝑐 − 𝑎 − 𝑏 | = (𝑎 + 𝑏 + 𝑐)2.
evsjv‡`k Dš§y³ wek^we`¨vjq e¨e¯’vcKxq wm×všÍ MÖn‡Y MwYZ BDwbU AvU c„ôv 168 9. | 1 1 1 𝑎 𝑏 𝑐 𝑎2 − 𝑏𝑐 𝑏2 − 𝑐𝑎 𝑐2 − 𝑎𝑏 | = 0 10. | −𝑥2 𝑥𝑦 𝑥𝑧 𝑥𝑦 −𝑦2 𝑦𝑧 𝑥𝑧 𝑥𝑦 −𝑧2 | = 4𝑥2𝑦2𝑧2 11. | 𝑎 + 𝑏 + 2𝑐 𝑎 𝑏 𝑐 𝑏 + 𝑐 + 2𝑎 𝑏 𝑐 𝑎 𝑐 + 𝑎 + 2𝑏 | = 2(𝑎 + 𝑏 + 𝑐)3 12. 4 3 0 2 1 1 A Ges 3 2 1 3 0 4 B n‡j (𝑖) 3𝐴 − 4𝐵 (𝑖𝑖) 𝐴 + 𝐵 (𝑖𝑖𝑖) 𝐵 − 𝐴 Gi gvb wbY©q Kiæb| 13. gvb wbY©q Kiæb: 3 2 1 6 5 1 4 2 3 | 14. 𝐴 = [ 2 −2 −2 2 ] Ges 𝐵 = [4 0 2 −1] n‡j, 𝐴𝐵 I𝐵𝐴 wbY©q Kiæb| 15. 𝐴 = [ 5 2 9 −2 5 3] Ges 𝐵 = [ 0 7 1 2 0 −5 ] n‡j, cÖgvY Kiæb 𝐴𝐵 ≠ 𝐵𝐴| DËigvjv- 1.K 2. M 3. N 12. (𝑖) [−13 −3 18 4 17 0 ] (𝑖𝑖) [ 5 −3 −1 −1 1 7 ] (𝑖𝑖𝑖) [ 3 1 −5 −1 −5 −1] 13. [−13 −3 18 4 17 0 ] 14. 𝐴𝐵 = [16 −9 −2 −5] Ges 𝐵𝐴 = [4 24 5 7 ].