Mathematics-L3-BASIC-ALGEBRA-AND-TRIGONOMETRY

Published on
Embed video
Share video
Ask about this video

Scene 1 (0s)

1 TVET NATIONAL COMPREHENSIVE ASSESSMENT, SCHOOL YEAR 2020/2021 SECTOR: ALL TRADE: ALL RTQF LEVEL: Level 3 MODULE and Title: BASIC ALGEBRA AND TRIGONOMETRY, GENAM301 MARKING SCHEME QUESTION 1. simplify the following a. 𝑖801 /2.5marks b. 𝑖22775 /2.5marks QUESTION 2. A ladder, 3.9 m long, leans against a wall. If its foot is 1.2 m from the wall, how high up the wall does it reach? /5 Marks QUESTION 3. Solve 2 Sinx =√2; between 0≀ x ≀ 2πœ‹ /5Marks QUESTION 4. Solve the following simultaneous equations, {3x + 5y = 42 2y – x βˆ’ 8 = 0 /5 Marks {3x + 5y = 42 βˆ’π‘₯ + 2𝑦 = 8 QUESTION 5. Given the function f(k) =k2+8k +16. Find the values k. /5Marks.

Scene 2 (34s)

2 QUESTION 6. a) Convert the following degrees into πœ‹ radians i. 1350 /1.5Marks ii. 2250 /1.5Marks b) Convert the following πœ‹ radians into degrees 5πœ‹ 6 /2Marks QUESTION 7. Given f(x)= 5π‘₯ π‘₯+1 a. Find f (2) /2 .5Marks b. Find 𝑓(1/π‘š) / 2.5 Marks 8. Given that z=1+i find a. Re(z) /1.5 Marks b. Im(z) /1.5 Marks c.|z| (Modulus of z) /2 Marks QUESTION 9. Simplify the following sin πœƒ π‘π‘œπ‘ π‘’π‘ πœƒ + 𝐢𝑂𝑆 πœƒ π‘ π‘’π‘πœƒ /5Marks QUESTION10. Gives an example of the network of streets in a modern city, a pedestrian may make a shortcut along the diagonal rather than walk along street M and street A. How much shorter is the shortcut. /5Marks QUESTION 11. Solve 𝑧2 βˆ’ 𝑖𝑧 = 4 + 2𝑖 /5marks.

Scene 3 (1m 12s)

3 SECTION B/30MARKS QUESTION12. Given z=i+1 and w=(1 + 3𝑖) Find a) z+w / 2.5 Marks b) z-w /2.5Marks c) 𝑀 𝑧 /2.5 Marks d) z. w /2.5 Marks QUESTION 13. Solve and discuss the parametric equation below (2-3m)x+1=π‘š2(1-x)/10 Marks QUESTION 14. Prove the following trigonometric identities a) 1 1βˆ’π‘π‘œπ‘ π‘₯ + 1 1+π‘π‘œπ‘ π‘₯ = 2𝑐𝑠𝑐2π‘₯/5 Marks b) 2π‘‘π‘Žπ‘›π‘₯ 1βˆ’π‘‘π‘Žπ‘›2π‘₯ = tan 2π‘₯/5 Marks QUESTION 15. Given that z=3+4i. Find the value of the expression z + 25 𝑧 /15Marks QUESTION 16. Find the values of k for which the equation x2 + (k + 1) x + 1 = 0 has: /15Marks a) Two distinct real roots b) No real roots..

Scene 4 (1m 41s)

4 END MARKING SCHEME QUESTION 1: simplify the following c. 𝑖801 /2.5marks d. 𝑖22775 /2.5marks SOLUTION: a) π’ŠπŸ–πŸŽπŸ = π’ŠπŸ’βˆ—πŸπŸŽ+𝟏 = π’Š b) π’ŠπŸπŸπŸ•πŸ•πŸ“ = π’ŠπŸ’βˆ—πŸ“πŸ”πŸ—πŸ‘+πŸ‘ = βˆ’π’Š Reference: Learning Unit 3: Apply Fundamentals of Complex Numbers QUESTION2: A ladder, 3.9 m long, leans against a wall. If its foot is 1.2 m from the wall, how high up the wall does it reach? /5 Marks SOLUTION: A figure below is an illustration of the situation. Note that the ground must be assumed to be horizontal and level and hence at right angles to the wall. By Pythagoras’ theorem, π’‰πŸ + 𝟏. 𝟐𝟐 = πŸ‘. πŸ—πŸ π’‰πŸ = πŸ‘. πŸ—πŸ βˆ’ 𝟏. 𝟐𝟐 𝒉 = βˆšπŸ‘. πŸ—πŸ + 𝟏. 𝟐𝟐 𝒉 = πŸ‘. πŸ•πŸπ’Ž Thus, the ladder reaches 3.71 m up the wall. Reference: Learning Unit 2: Apply Fundamentals of trigonometry QUESTION 3: Solve 2 Sinx =√2; between 0≀ x ≀ 2πœ‹ /5Marks SOLUTION: 2 Sinx =√𝟐.

Scene 5 (2m 23s)

5 π’”π’Šπ’π’™ = √𝟐 𝟐 Where √𝟐 𝟐 = πŸ’πŸ“πŸŽ πŸπ’™ = Reference Learning Unit1: Solve algebraically or Linear and quadratic Equations or inequalities QUESTION5: Given the function f(k) =k2+8k +16. Find the values k. / 5Marks SOLUTION: By using quadratic formula method 𝑫 = π’ƒπŸ βˆ’ πŸ’π’‚π’„ Where a=1, b=8, c=16 𝑫 = πŸ–πŸ βˆ’ πŸ’ βˆ— 𝟏 βˆ— πŸπŸ” = πŸ”πŸ’ βˆ’ πŸ”πŸ’ = 𝟎.

Scene 6 (2m 54s)

6 If D=0 K1 =K2 = βˆ’π’ƒ πŸπ’‚ = βˆ’πŸ– πŸβˆ—πŸ= -4 Hence, the value of K is -4 Reference Learning Unit1: Solve algebraically or Linear and quadratic Equations or inequalities QUESTION 6a) Convert the following degrees into πœ‹ radians i. 1350 /1.5Marks ii. 2250 /1.5Marks b) Convert the following πœ‹ radians into degrees 5πœ‹ 6 /2Marks SOLUTION: a. i. 1350 = πŸπŸ‘πŸ“ βˆ— 𝝅 πŸπŸ–πŸŽ = πŸ‘π… πŸ’ ii. 2250 = πŸπŸπŸ“βˆ—π… πŸπŸ–πŸŽ = πŸ“π… πŸ’ b. πŸ“π… πŸ” = πŸ“π… πŸ” βˆ— πŸπŸ–πŸŽ 𝝅 = πŸπŸ“πŸŽπŸŽ Reference: Learning Unit 2: Apply Fundamentals of trigonometry QUESTION7: Given f(x)= 5π‘₯ π‘₯+1 a. Find f (2) /2 .5Marks b. Find 𝑓(1/π‘š) / 2.5 Marks SOLUTION: a. f(2) = πŸ“βˆ—πŸ 𝟐+𝟏 = 𝟏𝟎 πŸ‘ 𝒇 ( 𝟏 π’Ž) = πŸ“βˆ—πŸ/π’Ž 𝟏/π’Ž+𝟏 = πŸ“ π’Ž 𝟏+π’Ž π’Ž = πŸ“ π’Ž βˆ— π’Ž 𝟏+π’Ž = πŸ“ 𝟏+π’Ž Reference Learning Unit1: Solve algebraically or Linear and quadratic Equations or inequalities 8. Given that z=1+i find a. Re(z) /1.5 Marks b. Im(z) /1.5 Marks.

Scene 7 (3m 35s)

7 c.|z| (Modulus of z) /2 Marks SOLUTION: a. Re(z) =1 b. Im(z) =1 c. |z| =√𝟏𝟐 + 𝟏𝟐 = √𝟐 Reference: Learning Unit 2: Apply Fundamentals of trigonometry QUESTION 9: Simplify the following sin πœƒ π‘π‘œπ‘ π‘’π‘ πœƒ + 𝐢𝑂𝑆 πœƒ π‘ π‘’π‘πœƒ /5Marks SOLUTION: We know that π’„π’π’”π’†π’„πœ½ = 𝟏 π’”π’Šπ’πœ½ and π’”π’†π’„πœ½ = 𝟏 π’„π’π’”πœ½ 𝐬𝐒𝐧 𝜽 𝒄𝒐𝒔𝒆𝒄 𝜽 + π‘ͺ𝑢𝑺 𝜽 π’”π’†π’„πœ½ = 𝐬𝐒𝐧 𝜽 𝟏 π’”π’Šπ’πœ½ + π‘ͺ𝑢𝑺 𝜽 𝟏 π’„π’π’”πœ½ π’”π’Šπ’πœ½ 𝟏 𝟏 π’”π’Šπ’πœ½ + π’„π’π’”πœ½ 𝟏 𝟏 π’„π’π’”πœ½ = 𝐬𝐒𝐧 𝜽 𝟏 βˆ— 𝐬𝐒𝐧 𝜽 𝟏 + 𝐜𝐨𝐬 𝜽 𝟏 βˆ— π’„π’π’”πœ½ 𝟏 = 𝐬𝐒𝐧𝟐 𝜽 + 𝐜𝐨𝐬𝟐 𝜽 = 𝟏 Reference: Learning Unit 2: Apply Fundamentals of trigonometry QUESTION10: Gives an example of the network of streets in a modern city, a pedestrian may make a shortcut along the diagonal rather than walk along street M and street A. How much shorter is the shortcut. /5Marks SOLUTION: The network of streets in a modern city is form a rectangle according to the figure above Street M=116m.

Scene 8 (4m 13s)

8 Street A=86m By using Pythagorean Theorem π’„πŸ = π’‚πŸ + π’ƒπŸ π’„πŸ = πŸπŸπŸ”πŸ + πŸ–πŸ”πŸ π’„πŸ = πŸπŸ‘. πŸ’πŸ“πŸ” + πŸ•. πŸ‘πŸ—πŸ” 𝒄 = √𝟐𝟎. πŸ–πŸ“πŸ 𝒄 = πŸπŸ’πŸ’. πŸ’π’Ž Hence the diagonal=144.4m which is the shortcut Reference: Learning Unit 2: Apply Fundamentals of trigonometry QUESTION11. Solve 𝑧2 βˆ’ 𝑖𝑧 = 4 + 2𝑖 /5marks SOLUTION: π’›πŸ + π’Šπ’› βˆ’ πŸπ’Š βˆ’ πŸ’ = 𝟎 𝑫 = π’ƒπŸ βˆ’ πŸ’π’‚π’„ = (βˆ’π’Š)𝟐 βˆ’ πŸ’ βˆ— 𝟏 βˆ— (βˆ’πŸπ’Š βˆ’ πŸ’) = βˆ’πŸ + πŸ–π’Š + πŸπŸ” = πŸπŸ“ + πŸ–π’Š βˆšπ‘«=Β±(πŸ’ + π’Š) π’πŸ = π’Š + πŸ’ + π’Š 𝟐 = 𝟐 + π’Š π’›πŸ = π’Šβˆ’πŸ’βˆ’π’Š 𝟐 = βˆ’πŸ Hence, 𝑺 = Reference: Learning Unit 3: Apply Fundamentals of Complex Numbers SECTION B/30MARKS QUESTION12. Given z=i+1 and w=(1 + 3𝑖) Find a) z+w / 2.5 Marks b) z-w /2.5Marks.

Scene 9 (4m 45s)

9 c) 𝑀 𝑧 /2.5 Marks d) z. w /2.5 Marks SOLUTION: a) z+ w = (i+1) + (1+3i) =1+1+i+3i=2+4i b) z-w = (i+1)- (1+3i) =1-1+i-3i=0-2i =-2i c) π’˜ 𝒛 = 𝟏+πŸ‘π’Š π’Š+𝟏 = (𝟏+πŸ‘π’Š)(π’Šβˆ’πŸ) (π’Š+𝟏)(π’Šβˆ’πŸ) = π’Šβˆ’πŸ+πŸ‘π’ŠπŸβˆ’πŸ‘π’Š π’ŠπŸβˆ’πŸπŸ = βˆ’πŸβˆ’πŸπ’Šβˆ’πŸ‘ βˆ’πŸβˆ’πŸ = βˆ’πŸ’βˆ’πŸπ’Š βˆ’πŸ = 𝟐 + 𝐒 d) Z.w = (i+1) * (1+3i) =i+3i2 +1 +3i=4i-3+1=4i-2 Reference3: Learning Unit 3: Apply Fundamentals of Complex Numbers QUESTION 13: Solve and discuss the parametric equation below (2-3m)x+1=π‘š2(1-x)/10 Marks SOLUTION: (2 – 3m) x + 1 = m2 (1 – x) = 2x – 3mx + 1 = m2 – m2 x 2x – 3mx + m2 x – m2 + 1 = 0 X (2 – 3m + m2) – m2 + 1 = 0 X (2 – 3m + m2) = m2 – 1 𝒙 = π’ŽπŸβˆ’πŸ πŸβˆ’πŸ‘π’Ž+π’ŽπŸ = (π’Žβˆ’πŸ)(π’Ž+𝟏) (π’Žβˆ’πŸ)(π’Žβˆ’πŸ) = π’Ž+𝟏 π’Žβˆ’πŸ If m = 2, then there is no solution. If m β‰  2, then the solution is 𝒙 = π’Ž+𝟏 π’Žβˆ’πŸ Reference: Learning Unit1: Solve algebraically or Linear and quadratic Equations or inequalities QUESTION14: Prove the following trigonometric identities a) 1 1βˆ’π‘π‘œπ‘ π‘₯ + 1 1+π‘π‘œπ‘ π‘₯ = 2𝑐𝑠𝑐2π‘₯/5 Marks b) 2π‘‘π‘Žπ‘›π‘₯ 1βˆ’π‘‘π‘Žπ‘›2π‘₯ = tan 2π‘₯/5 Marks.

Scene 10 (5m 22s)

10 Solution a) 𝟏 πŸβˆ’π’„π’π’”π’™ + 𝟏 𝟏+𝒄𝒐𝒔𝒙 = πŸπ’„π’”π’„πŸπ’™ LHS= 𝟏 πŸβˆ’π’„π’π’”π’™ + 𝟏 𝟏+𝒄𝒐𝒔𝒙 RHS=πŸπ’„π’”π’„πŸπ’™ By proving that LHS=RHS Let work on the LHS= 𝟏 πŸβˆ’π’„π’π’”π’™ + 𝟏 𝟏+𝒄𝒐𝒔𝒙 = 𝟏(𝟏+𝒄𝒐𝒔𝒙)+𝟏(πŸβˆ’π’„π’π’”π’™) (πŸβˆ’π’„π’π’”π’™)(𝟏+𝒄𝒐𝒔𝒙) = 𝟏+𝟏+π’„π’π’”π’™βˆ’π’„π’π’”π’™ πŸπŸβˆ’πœπ¨π¬πŸ 𝒙 = 𝟐 πŸβˆ’πœπ¨π¬πŸ 𝒙 We know that 𝟏 βˆ’ 𝐜𝐨𝐬𝟐 𝒙 = 𝐬𝐒𝐧𝟐 𝒙 We get 𝟐 𝐬𝐒𝐧𝟐 𝒙 As we know 𝟏 𝐬𝐒𝐧𝟐 𝒙 = π’„π’”π’„πŸπ’™ Which means that? 𝟐 𝐬𝐒𝐧𝟐 𝒙 = πŸπ’„π’”π’„πŸπ’™ Hence LHS=RHS Reference: Learning Unit 2: Apply Fundamentals of trigonometry Question15. Given that z=3+4i. Find the value of the expression z + 25 𝑧 /15Marks SOLUTION: z + πŸπŸ“ 𝒛 =3+4i+ πŸπŸ“ πŸ‘+πŸ’π’Š= (πŸ‘+πŸ’π’Š)(πŸ‘+πŸ’π’Š)+πŸπŸ“ πŸ‘+πŸ’π’Š = πŸ—+πŸπŸ’π’Š+πŸπŸ”π’ŠπŸ+πŸπŸ“ πŸ‘+πŸ’π’Š = πŸ—+πŸπŸ’π’Šβˆ’πŸπŸ”+πŸπŸ“ πŸ‘+πŸ’π’Š = πŸπŸ–+πŸπŸ’π’Š πŸ‘+πŸ’π’Š = (πŸπŸ–+πŸπŸ’π’Š)(πŸ‘βˆ’πŸ’π’Š) (πŸ‘+πŸ’π’Š)(πŸ‘βˆ’πŸ’π’Š).

Scene 11 (5m 45s)

11 = πŸ“πŸ’βˆ’πŸ•πŸπ’Š+πŸ•πŸπ’Šβˆ’πŸ—πŸ”π’ŠπŸ πŸ—βˆ’πŸπŸπ’Š+πŸπŸπ’Šβˆ’πŸ’πŸ”π’ŠπŸ = πŸ“πŸ’+πŸ—πŸ” πŸ—+πŸπŸ” = πŸπŸ“πŸŽ πŸπŸ“ Therefore z + πŸπŸ“ 𝒛 = πŸ” Reference: Learning Unit 3: Apply Fundamentals of Complex Numbers 16. Find the values of k for which the equation x2 + (k + 1) x + 1 = 0 has: /15Marks a) Two distinct real roots b) No real roots. SOLUTION: βˆ† = (k + 1)2 – 4(1)(1) = (k + 1)2 – 4 = k2 + 2k + 1 – 4 = k2 + 2k – 3 = (k + 3) (k – 1) = 0 then k = –3 or k = 1. Table of sign of βˆ† = k2 + 2k – 3 = (k + 3) (k – 1) k Factors – ∞ –3 1 +∞ k + 3 - - - 0 + + + + k – 1 - - - - - 0 + + + (k + 3)(k – 1) + + 0 - 0 + + + a) For two distinct real roots; βˆ† > 0 and so k < –3 or k > 1. b) For no real roots βˆ† < 0 and so –3< k < 1. Reference: Learning Unit1: Solve algebraically or Linear and quadratic Equations or inequalities.